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Abstract Applying the well-known Feynman-Kac formula of inhomogeneous case, an in-
teresting and rigorous mathematical proof of generalized Jarzynski’s equality of inhomoge-
neous multidimensional diffusion processes is presented, followed by an extension of the
second law of thermodynamics. Then, we explain its physical meaning and applications,
extending Hummer and Szabo’s work (Proc. Natl. Acad. Sci. USA 98(7):3658–3661, 2001)
and Hatano-Sasa equality of steady state thermodynamics (Phys. Rev. Lett. 86:3463–3466,
2001) to the general multidimensional case.

Keywords Feynman-Kac formula · Jarzynski’s equality · Inhomogeneous diffusion
processes · Nonequilibrium thermodynamics · Hatano-Sasa equality

1 Introduction

Thermodynamics of irreversible systems far from equilibrium has been developed for more
than thirty years since the original works by Haken [12, 13] about laser and Prigogine et al.
[11, 30] about oscillations of chemical reactions. A nonequilibrium system can be regarded
as an open system with positive entropy production, which means exchange of substances
and energy with its environment.

At almost the same time, T.L. Hill, etc. [16–19] constructed a general mesoscopic model
for the combination and transformation of biochemical polymers in vivid metabolic systems
since 1966, which can be applied to explain the mechanism of muscle contraction and active
transports, such as the Na and K ions actively transferring and penetrating through organic
membranes in the Hodgkin-Huxley model. These contributions have been developed and
summarized in [26].
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One can use stationary homogeneous Markov chains and diffusion processes as math-
ematical tools to model nonequilibrium steady states and cycle fluxes. Mathematical the-
ory of nonequilibrium steady states has been developed for more than three decades since
Qians’ original works [34–37]. They derived the formulae for entropy production rate and
circulation distribution of homogeneous Markov chains, Q-processes and diffusions. They
concluded that the chain or process is reversible if and only if its entropy production rate
vanishes, or iff there is no net cycle fluxes. Here, we recommend a recent book [25] for the
systematic presentation of this theory.

In the past decade, a few relations that describe the statistical dynamics of driven systems
have been discovered, which are valid even if the system is driven far from equilibrium.
These include Jarzynski’s exciting nonequilibrium work relation [2–4, 21–23], which gives
equilibrium Helmholtz free energy differences in terms of nonequilibrium measurements of
the work required to switch from one ensemble to another. This result has been applied to the
mechanical extension of single RNA molecules in the laboratory [29]. Although the concept
of Helmholtz free energy fails in nonequilibrium steady states (NESS), Hatano and Sasa
[15] have generalized Jarzynski’s work to the NESS described by a simple one-dimensional
Langevin system, which is more relevant to motor proteins.

However, few rigorous mathematical results are derived since the emergence of Jarzyn-
ski’s equality. Applying the Feynman-Kac formula, G. Hummer and A. Szabo gave a quite
brief proof of Jarzynski’s equality for inhomogeneous diffusive dynamics on a potential
[20], and after that, Hong Qian investigated a simple two-state example of inhomogeneous
Markov chains [33]. But in fact, their proofs are not mathematically rigorous, and they all
misused the Feynman-Kac formula of the inhomogeneous case [27, Theorem 5.7.6], since
it is quite different from the Feynman-Kac formula of the homogeneous case [27, Theo-
rem 4.4.2] and the former is actually more difficult to apply than the latter one. Further
explanation is included in Sect. 3.1. On the other hand, the Jarzynski’s equality is trivial in
the homogeneous case (see Remark 2.10 below), which actually implies that inhomogeneity
is a necessity for Jarzynski’s equality to make sense.

Recently enlightened by the work of Crooks [4], we gave a completely different and in-
teresting rigorous derivation of the Jarzynski’s equality in inhomogeneous Markov chains
[8], without applying the Feynman-Kac formula. Moreover, we investigated the relationship
between Jarzynski’s equality and the statistical physical property in the model of inhomo-
geneous Markov chains, including reversibility and entropy production [9, 10].

Nevertheless, it is not easy to extend the main idea of proof in [8] to the case of inho-
mogeneous diffusion processes, because by this way, one needs a very general version of
the Cameron-Martin-Girsanov formula similar to [39, Theorem 6.4.2], which is difficult to
derive. On the other hand, physicists always believe that inhomogeneous diffusion processes
can be regarded as the limit of inhomogeneous Markov chains, and in most of their works,
they actually only proved the corresponding results in the case of inhomogeneous Markov
chains rather than diffusion processes. However, from the mathematical point of view, inho-
mogeneous diffusion processes can only be regarded as the limit of inhomogeneous Markov
chains in distribution rather than in trajectories. Hence, the Jarzynski’s equality in inhomo-
geneous diffusion processes can not be directly derived as the limit in some sense of that
in inhomogeneous Markov chains, and we have to appeal to the Feynman-Kac formula of
inhomogeneous case.

In this paper, applying the well-known Feynman-Kac formula of inhomogeneous case,
an interesting and rigorous mathematical proof of generalized Jarzynski’s equality in in-
homogeneous multidimensional diffusion processes is presented in Sect. 2, followed by an
extension of the second law of thermodynamics. It should be mentioned that the method



Generalized Jarzynski’s Equality of Diffusion Processes 677

of proof in the present paper can also be applied to derive the same Jarzynski’s equality
in inhomogeneous Markov chains as [8], or even possibly to extend to general Markov
processes. In Sect. 3, we explain its physical meaning and applications, extending Hummer
and Szabo’s work [20] and Hatano-Sasa equality of steady state thermodynamics [15] to the
general multidimensional case.

In order to make the present paper accessible to a somewhat wider audience, some rea-
sonable sufficient conditions for Jarzynski’s equality of inhomogeneous diffusion processes
are provided in Remark 2.7 below.

2 Mathematical Theory of Generalized Jarzynski’s Equality

2.1 Basic Property of Inhomogeneous Diffusion Processes

This subsection is about the construction of inhomogeneous diffusion processes applying the
fundamental solutions of partial differential equations. The conditions given here are some-
what optimal, and the readers who are not interested in technical details can directly skip
to the next subsection for the proof of generalized Jarzynski’s equality. We note here that
most of these conditions including (A1), (A2) and (A4) are satisfied when all the coefficients
belong to the smooth function set C∞ and all the derivatives are uniformly bounded.

Denote At(x) = (aij (t, x))d×d and b̄t (x) = (b̄i(t, x))d×1, where aij (t, x) and b̄i (t, x) are
functions defined on [0,+∞) × R

d . Suppose that

(A1) aij (t, x), b̄i(t, x) are uniformly bounded and uniformly continuous with respect to
both x and t , and also satisfy a Hölder condition with respect to x;

(A2) aij (t, x) satisfy a Hölder condition with respect to t ;
(A3) aij (t, x) satisfy the uniform ellipticity condition, i.e. there exists γ > 0, such that for

any d-dimensional real vector λ = (λ1, λ2, . . . , λd),

d∑

i,j=1

aij (t, x)λiλj ≥ γ

d∑

i=1

λ2
i ;

(A4) The derivatives
∂aij

∂xi
,

∂2aij

∂xi ∂xj
,

∂b̄i

∂xi
exist, uniformly bounded and satisfy a Hölder condi-

tion with respect to x.

For simplicity, let bt = (bi(t, x))d×1 and bi(t, x) = b̄i (t, x) − 1
2

∑d

j=1
∂aij (t,x)

∂xj
.

Theorem 2.1 below is rewritten from [6, Vol. II, Theorem 0.4, p. 227] and [7, Chap. 1,
Sect. 6, Theorem 11, p. 24; Chap. 1, Sect. 8, Theorem 15], and Theorem 2.3 is rewritten
from [6, Vol. I, remark of Theorem 5.11, p. 167] and [5, Chap. 4]. One can also find the
same results in [27, pp. 368–369] and [39, Chap. 3].

Theorem 2.1 If the coefficients satisfy conditions (A1), (A2), (A3), then the equation

∂u

∂s
+ Dsu = 0, (1)

where Dsu(s, x) = 1
2

∑d

i,j=1
∂

∂xi
aij (s, x) ∂u

∂xj
+ ∑d

i=1 bi(s, x) ∂u
∂xi

= ( 1
2∇ · A(s, x)∇ +

b(s, x) · ∇)u, has a unique fundamental solution p(s, t;x, y), satisfying:

(B1) p(s, t;x, y) > 0 for each s, t and x, y;
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(B2) In addition, if coefficients aij (t, x), b̄i(t, x) satisfy (A4), then p(s, t;x, y) satisfies the
conjugate equation:

∂u

∂t
= D̄∗

t u, (2)

where D̄∗
t u(t, y)= ∑d

i=1
∂

∂yi
[ 1

2

∑d

j=1 aij (t, y)
∂u(t,y)

∂yj
−bi(t, y)u(t, y)]=∇ ·[ 1

2A(t, y)×
∇u(t, y) − b(t, y)u(t, y)];

(B3) For any bounded continuous function f (x), u(s, t, x) = ∫
p(s, t;x, y)f (y)dy satisfies

(1) and lims↑t u(s, t, x) = f (x), which is uniformly convergent in any bounded domain
of R

d ; v(s, t, y) = ∫
p(s, t;x, y)f (x)dx satisfies (2), and limt↓s v(s, t, y) = f (y),

which is also uniformly convergent in any bounded domain of R
d ;

(B4) The following inequalities are satisfied:

p(s, t;x, y) ≤ M(t − s)− d
2 e− α|y−x|2

t−s ;
∂p(s, t;x, y)

∂xi

≤ M(t − s)− d+1
2 e− α|y−x|2

t−s ;

∂2p(s, t;x, y)

∂xi∂xj

≤ M(t − s)− d
2 −1e− α|y−x|2

t−s ;

∂p(s, t;x, y)

∂t
≤ M(t − s)− d

2 −1e− α|y−x|2
t−s ;

p(s, t;x, y) ≥ M1(t − s)− d
2 e− α1 |y−x|2

t−s − M2(t − s)− d
2 +λe− α2 |y−x|2

t−s ,

where M,M1,M2 and α,α1, α2 are all positive constants.
(B5) If f (x) is a bounded function with second-order continuous derivatives, which satisfy

a Hölder condition, then u(s, t, x) = ∫
p(s, t;x, y)f (y)dy satisfies

lim
s↑t

∂u

∂xi

= ∂f

∂xi

, lim
s↑t

∂2u

∂xi∂xj

= ∂2f

∂xi∂xj

;

while v(s, t, y) = ∫
p(s, t;x, y)f (x)dx satisfies

lim
t↓s

∂v

∂yi

= ∂f

∂yi

, lim
t↓s

∂2v

∂yi∂yj

= ∂2f

∂yi∂yj

.

Remark 2.2 Most of the following definitions of physical quantities make sense due to the
basic inequalities in (B4) together with (B3) and (B5).

Theorem 2.3 There exists a unique inhomogeneous diffusion process X = {Xt : t ≥ 0} on
R

d , whose transition probability density is {p(s, t;x, y)}. Moreover, X is a strong Markov
process. We call X the diffusion process with infinitesimal generator D.

Equation (1) is called the backward Kolmogorov equation of X, while (2) is called the
forward Kolmogorov equation of X.

Denote the initial distribution density of X as {ρ0(x) > 0 : x ∈ R
d}, which is at least

twice differentiable, then ρt (x) = ∫
ρ0(y)p(0, t;y, x)dy is the density function of Xt , sim-

ply denoted as ρt . Thus from (B3), ρt (x) satisfies (2), which is called the Fokker-Planck
equation.
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Indeed, due to the condition (A3), there exists a nonsingular d × d matrix �t(x) =
(�ij (t, x))d×d such that At(x) = �t(x)�T

t (x), where �T
t (x) is the transpose matrix of �t(x).

The inhomogeneous multidimensional diffusion process {Xt : t ≥ 0} can be considered as
the unique solution of the stochastic differential equation

dXt = b̄t (Xt )dt + �t(Xt )dWt ,

where {Wt }t≥0 is a d-dimensional Wiener process.

2.2 Rigorous Proof of Generalized Jarzynski’s Equality

Fix the time interval as [0, T ]. In order to make the quantities in Jarzynski’s equality below
mathematically well-defined, we have to make another basic assumption:

(A5) The elliptic equation D̄∗
t f (x) = 0 has a unique strong L1 solution πt = {πt(x) : x ∈

R
d} such that

∫
Rd πt (x)dx ≡1, recalling D̄∗

t πt (x)= ∑d

i=1
∂

∂xi
[ 1

2

∑d

j=1 aij (t, x) ∂πt (x)

∂xj
−

bi(t, x)πt (x)] = ∇ ·[ 1
2A(t, x)∇πt(x)−b(t, x)πt (x)]. Moreover, πt(x) is continuously

differentiable and uniformly bounded with respect to parameter t ∈ [0, T ]; ∂[πt (x)]
∂t

is
uniformly bounded too for t ∈ [0, T ]. In addition, suppose πt(x) > 0, ∀x ∈ R

d , t ≥ 0.

Remark 2.4 Consider a homogeneous diffusion process with infinitesimal generator D =
1
2 ∇ · A(x)∇ + b(x) · ∇ . In the uniformly elliptic case, if D̄∗π(x) = 0 has a positive strong
L1 solution such that

∫
Rd π(x)dx = 1, it is unique. To have a solution one has to impose

a sufficiently strong inward drift at infinity, or equivalently suppose that the homogeneous
diffusion process is positive recurrent [14, Chap. IV].

Physicists are interested in some reasonable sufficient conditions. A particular example
is the equilibrium case discussed in the next section. More generally, it is sufficient to sup-
pose that the diffusion coefficient A(x) is bounded and uniformly elliptic, b(x) is bounded
smooth, and for large x, it is the minus gradient of a confining potential U(x), which is
satisfied for many physical problems. The proof can be based on the Lyapunov function cri-
teria for asymptotic stability of stochastic dynamic systems ([28, Theorem 11.9.1] and [14,
Theorem III.5.1]):

If there exists a smooth function V (x) with the properties

V (x) ≥ 0

and

lim
R→∞

sup
|x|>R

DV (x) = −∞,

then there exists a stationary distribution for the diffusion process.
Therefore, if the potential U(x) satisfies that

sup
|x|>R

[
1

2
∇ · A(x)∇U(x) + b(x) · ∇U(x)

]

= sup
|x|>R

[
1

2
∇ · A(x)∇U(x) − ‖∇U(x)‖2

2

]

→ −∞ as R → ∞, (3)
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where ‖�v‖2
2 = ∑d

i=1 v2
i , then D̄∗π(x) = 0 has a unique positive strong L1 solution such that∫

Rd π(x)dx = 1. For example, the sufficient condition (3) is satisfied when the potential
U(x) is a polynomial with even highest order.

Another nontrivial example is the multidimensional Ornstein-Ulenbeck process with drift
coefficients Bx = (bij )d×d · x and diffusion coefficients σ = {σij }d×r . Its corresponding
Fokker-Planck equation is

∂u

∂t
= 1

2

d∑

i,j=1

aij

∂2u

∂xi∂xj

−
d∑

i=1

∂

∂xi

[bi(x)u],

where bi(x) = ∑d

j=1 bij xj and aij = ∑r

k=1 σikσjk . It is well known that its unique stationary
distribution is a multidimensional normal distribution with mean zero and variance 
 =∫ +∞

0 eBsAeBTsds, provided that the matrix A = (aij ) is nonsingular and the real parts of all
eigenvalues of B = (bij )d×d are negative.

According to [28, Example 11.9.2], the Ornstein-Ulenbeck semigroup determined by the
above Fokker-Planck equation is asymptotically stable with limiting density of N(0,
).
Moreover, according to [25, Theorem 3.3.7], the stationary multidimensional Ornstein-
Ulenbeck process is reversible (or say, in equilibrium state) if and only if the force F =
2A−1Bx is the gradient of a potential U(x) satisfying

∫
eU(x)dx = 1, of iff the coefficient

A and B satisfy the symmetry condition A−1B = (A−1B)T [32]. Therefore, nonequilibrium
Ornstein-Ulenbeck processes can only exist in the multidimensional (d ≥ 2) case.

One could also require that the diffusion process is confined to some compact set or man-
ifold (e.g. torus), and the same arguments below can also be applied to prove the Jarzynski
equality in those cases without any difficulties.

πt can be called the quasi-invariant distribution1 at time t .
Fix the initial distribution density ρ0 = π0, which is one of the key points in Jarzynski’s

equality. Given an arbitrary absolutely continuous function F(t), denote

H(t, x) = F(t) − β−1 logπt(x), ∀x ∈ R
d . (4)

Then

πt (x) = e−βH(t,x)

∫
Rd e−βH(t,x)dx

,

and

F(t) = −β−1 ln
∫

Rd

e−βH(t,x)dx,

where β > 0 is a constant. Let

W(ω) =
∫ T

0

∂H

∂s
(s,Xs)ds =

∫ T

0

∂[F(s) − 1
β

logπs(Xs)]
∂s

ds

= �F −
∫ T

0

∂[ 1
β

logπs](Xs)

∂s
ds, (5)

1The notion “quasi-invariant distribution” means that if one takes A(t, x) and b̄(t, x) as the diffusion co-
efficient and drift coefficient of a homogeneous diffusion process respectively, πt (x) is just its invariant
distribution.
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where �F = F(T ) − F(0). Write

�H(ω) = H(T,XT ) − H(0,X0), (6)

and

Q(ω) = �H(ω) − W(ω). (7)

The following theorem is the basis of our proof, which is an application of the famous
Feynman-Kac formula in inhomogeneous case [27, Theorem 5.7.6].

Theorem 2.5 Under the preceding assumptions, let Wd =W −�F =− ∫ T

0

∂[ 1
β

logπs ]
∂s

(Xs)ds,
and denote

v(t, x) = Et,x exp

[∫ T

t

∂[logπs]
∂s

(Xs)ds

]
, (8)

where Et,x means the expectation is taken conditioned on the event {Xt = x}, then v(t, x)

satisfies the Cauchy problem
{

∂v
∂t

(t, x) = − ∂[logπt (x)]
∂t

v(t, x) − Dtv(t, x),

v(T , x) = 1,
(9)

recalling that Dtv(t, x) = ( 1
2∇ · A(t, x)∇ + b(t, x) · ∇)v(t, x). Moreover, such a solution is

unique.

Proof We only need to check the condition of Theorem 5.7.6 in [27].
First, according to [6, Vol. II, Theorem 0.4, p. 227], the Cauchy problem (9) has a solution

v(t, x) which is continuous and satisfies the exponential growth condition

max
0≤t≤T

|v(t, x)| ≤ Meμ||x||2 , x ∈ R
d ,

for some constants M > 0 and μ > 0.
Moreover, due to the condition (A1), the coefficients aij (t, x) and b̄i (t, x) are uniformly

bounded with respect to t and x.
Finally, applying [27, Theorem 5.7.6 and Problem 5.7.7], together with Theorem 2.1 and

Theorem 2.3, we get the desired result. �

Now, it is time to derive the generalized Jarzynski’s equality of multidimensional diffu-
sion processes.

Theorem 2.6 Under the preceding assumptions, suppose that

(i)
∫

πt(x)v(t, x)dx < +∞ for t ∈ [0, T ], and
∫

∂[πt (x)v(t,x)]
∂t

dx are uniformly convergent
for t ∈ [0, T ]; and

(ii) for each i and j ,

lim
x→∞πt(x)bi(t, x)v(t, x) = 0,

lim
x→∞πt(x)aij (t, x)

∂v(t, x)

∂xj

= 0,

lim
x→∞

∂πt (x)

∂xi

aij (t, x)v(t, x) = 0;
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then we have

EP[0,T ] [e−βWd ] = 1, (10)

i.e.

EP[0,T ] [e−βW ] = e−β�F .

Proof Let g(t) = ∫
πt (x)v(t, x)dx, our aim is to show that g(t) ≡ 1, ∀t ∈ [0, T ].

Firstly, due to the assumption (i), it holds that

dg(t)

dt
=

∫
∂[πt (x)v(t, x)]

∂t
dx =

∫ [
∂πt (x)

∂t
v(t, x) + πt(x)

∂v

∂t
(t, x)

]
dx,

according to [43, Vol. III, Sect. 21.3, Theorem 4, p. 395]. And from Theorem 2.5, follows
that

∂πt (x)

∂t
v(t, x) + πt(x)

∂v

∂t
(t, x)dx

= ∂πt (x)

∂t
v(t, x) + πt(x)

[
−∂[logπt (x)]

∂t
v(t, x) − Dtv(t, x)

]

= −πt (x)Dtv(t, x).

Then, with the assumption (ii), integrating by parts, one has

dg(t)

dt
=

∫
[−πt (x)Dtv(t, x)]dx =

∫
[−v(t, x)D̄∗

t πt (x)]dx = 0, ∀t ≥ 0,

which together with the fact that g(T ) = 1 implies g(t) ≡ 1.
Therefore, g(0) = EP[0,T ] [e−βWd ] = 1. �

Remark 2.7 (Reasonable sufficient conditions) Some physicists may think that the condi-
tions given in this paper are more general than ever needed, and they would be satisfied
with reasonable sufficient conditions for the validity of the Jarzynski equality. As we have
mentioned at the beginning of this section, it is sufficient to assume (a) all the coefficients
are bounded, at least twice continuously differentiable and all the derivatives are uniformly
bounded too; (b) the diffusion coefficients At(x) are uniformly elliptic (see (A3)); and (c) the
existence of quasi-invariant distributions (see (A5) and Remark 2.4). However, the techni-
cal requirements (i) and (ii) in Theorem 2.6 are still not easy to be verified, because we do
not have exact estimation on the quantity v(t, x). But we believe that the conditions (a), (b)
and (c) should be able to guarantee the technical requirements (i) and (ii). Especially, in the
equilibrium case (see Sect. 3.1), it would be sufficient to suppose that H(t, x) → ∞ and
| ∂H(t,x)

∂xi
| → ∞ as x → ∞, and xi · ∂H(t,x)

∂xi
> 0 for all i and sufficiently large x.

In addition, one can explicitly calculate the quantity v(t, x) in some very special case.
For example, consider the one-dimensional diffusion dynamics

dXt = −(Xt − t)dt + σdWt

on a moving potential U(t, x) = 1
2 (x − t)2, which is investigated by van Zon and Cohen

[40–42] and mentioned in [1]. Its quasi-invariant distribution πt (x) = 1√
πσ

e
− (x−t)2

σ2 . Conse-
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quently, H(t, x) = (x−t)2

σ 2 , the Helmholtz free energy F(t) ≡ −log
√

πσ , and

Wd = W =
∫ T

0

∂H

∂s
(s,Xs)ds = − 2

σ 2

∫ T

0
(Xs − s)ds.

The unique solution of this stochastic differential equation can be expressed as

Xs = et−sXt + (
s + et−s − tet−s − 1

) + σe−s

∫ s

t

eudWu, ∀s ≥ t ≥ 0.

Let

Y T
t = − 2

σ 2

∫ T

t

(Xs − s)ds

= − 2

σ 2

∫ T

t

(
et−sXt + et−s − tet−s − 1 + σe−s

∫ s

t

eudWu

)
ds.

Because the process {Xt : t ≥ 0} is Gaussian, one only needs to calculate the expectation
and variance of the quantity Y T

t :

Et,xY
T
t = − 2

σ 2

∫ T

t

(
et−sx + et−s − tet−s − 1

)
ds

= − 2

σ 2

[
(x + 1 − t)

(
1 − et−T

) − T + t
]
,

and

Vart,xY
T
t = Vart,x

[
2

σ

∫ T

t

e−s

∫ s

t

eudWuds

]

= Vart,x

[
2

σ

∫ T

t

eudWu

∫ T

u

e−sds

]

= 4

σ 2

∫ T

t

(∫ T

u

eu−sds

)2

du

= 4

σ 2

[
T − t − 2

(
1 − et−T

) + 1

2

(
1 − e2t−2T

)]
.

Therefore,

v(t, x) = Et,xe
−YT

t = exp

[
−Et,xY

T
t + Vart,xY T

t

2

]

= exp

{
2

σ 2

[
x
(
1 − et−T

) − 1

2
− t + (t + 1)et−T − 1

2
e2t−2T

]}
.

Finally, it is easy to check that the process {Xt : t ≥ 0} satisfies the requirements (i) and (ii)
in Theorem 2.6 and the quantity

g(t) =
∫

πt (x)v(t, x)dx

= 1√
πσ

∫
exp

[
− (x − t − 1 + et−T )2

σ 2

]
dx ≡ 1.
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Definition 2.8 We call the inhomogeneous multidimensional diffusion process X =
{X(t)}0≤t≤T is unperturbed, if πt , 0 ≤ t ≤ T , are all the same.

The following is an extension of the second law of thermodynamics.

Theorem 2.9 EP[0,T ]Wd ≥ 0, i.e.

EP[0,T ]W ≥ �F. (11)

Moreover, EP[0,T ]W = �F if and only if

∫ T

0

∂ logπs

∂s
(Xs(ω))ds = 0, P[0,T ]-a.s.

If the inhomogeneous multidimensional diffusion process X = {X(t)}0≤t≤T is unperturbed,
then W(ω) = �F for each trajectory ω.

Proof By the Jazynski’s equality (10) and Jensen’s inequality,

e−β�F = EP[0,T ] [e−βW ] ≥ e−βE
P[0,T ] W,

i.e.

EP[0,T ]W ≥ �F,

and the equality holds if and only if W(ω) = �F a.s., i.e.

∫ T

0

∂ logπs

∂s
(Xs(ω))ds = 0, P[0,T ]-a.s.

Furthermore, if the inhomogeneous multidimensional diffusion process X = {X(t)}0≤t≤T is
unperturbed, then ∂ logπs

∂s
(x) ≡ 0, and consequently W(ω) = �F for each trajectory ω. �

Remark 2.10 In the homogeneous(steady state) case, the diffusion process is obviously un-
perturbed, which yields Wd ≡ 0. So the theorems above become trivial.

Recently, M. Baiesi et al. [1] have proved an exact fluctuation theorem for the dissipative
work Wd , i.e.

Pπ0(Wd = x)

Pπ0(Wd = −x)
= eβx, (12)

for each x, under some condition [1, (14)], which can also give rise to the generalized Jarzyn-
ski’s equality Ee−βWd = 1. They also pointed out that the diffusive dynamics on an asym-
metric potential may not agree with this exact fluctuation theorem [1, Fig. 2], while the
generalized Jarzynski’s equality (Theorem 2.6) still holds. In addition, if the time-averaged
dissipative work Wd

T
has a large deviation property with rate function I (x), then (12) leads

to the Gallavotti-Cohen type fluctuation theorem I (x) = I (−x) − x.
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3 Physical Meaning and Applications

3.1 Generalization of Hummer and Szabo’s Work

In Jarzynski’s original work [21–24] and Crooks’ recent work [2–4], they derived the Jarzyn-
ski’s equality through standard derivation of statistical physics for simple stochastic models
including inhomogeneous denumerable Markov chains.

Afterwards, in Hummer and Szabo’s paper [20], it is shown how equilibrium free energy
profiles can be extracted rigorously from repeated nonequilibrium force measurements on
the basis of an extension of Jarzynski’s remarkable identity between free energies and the
irreversible work. But they misused the Feynman-Kac formula [27, Theorems 4.4.2, 5.7.6].
This well-known formula provides a stochastic representation for the solution v(t, x) of the
concerned parabolic equation through the conditional expectation of the path integration of
a specific stochastic process ξ = {ξt : t ≥ 0}, and v(t, x) can be regarded intuitively as an
expectation with respect to the “weighted” phase space distribution (see (8)). In the inho-
mogeneous case, this expectation is taken conditioned on the event {ξt = x} at time t , while
in the homogeneous case, x is taken to be the starting point of the trajectory of ξ , i.e. the
expectation in the representation is taken conditioned on {ξ0 = x} at the initial time. More
important, the quantity v(t, x) in the Feynman-Kac formula actually should be defined by
holding the final time T fixed and treating the time t as a variable, and in the inhomogeneous
situation, the time interval for the path integration can not be shifted from [t, T ] to [0, T − t]
while it can in the homogeneous case, which implies that it is impossible to directly inte-
grate the quantity v(t, x) with respect to x applying the initial equilibrium distribution to
derive the generalized Jarzynski’s equality. Therefore, from the mathematical point of view,
the right side of [20, (4)] and the quantity g(z, t) defined in [22, (14)] can not satisfy the
Feymann-Kac formula in the inhomogeneous case. On the other hand, although the Kol-
mogorov forward equation is more familiar and intuitively natural for physicists, the path
integration of the specific diffusion process (i.e. the quantity v(t, x)) can only satisfy the
elliptic equation similar to the Kolmogorov backward equation according to the standard
Feynman-Kac formula [27, Theorem 5.7.6], which is just another reason why Hummer and
Szabo’s derivation [20] is flawed.

What they considered is the diffusive dynamics on a potential V (t, x) satisfying∫
Rd V (t, x)dx < ∞, whose time evolution is governed by the differential operator Lt =

1
2 ∇ · A(t, x)∇ + b(t, x) · ∇ , in which A(t, x) = 2D is the diffusion coefficient and
b(t, x) = D∇V (t, x) is the drift coefficient. Now, we can restate the results of Hummer
and Szabo’s work in the case of general multidimensional diffusion processes, applying
the mathematical theory in the previous section. The statements below could be anticipated
starting from [20], but they are here rigorously derived.

It is important to point out that in the homogeneous diffusion case, the force 2A−1(x)b(x)

has a potential V (x) if and only if the steady state is an equilibrium state [25, Theo-
rem 3.3.7]. In this case, the invariant distribution π(x) can be expressed as the Boltzmann
distribution

π(x) = e−V (x)

∫
Rd e−V (x)dx

.

Moreover, the stationary diffusion process with initial distribution density π(x) is in detailed
balance.
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Suppose that for each t ∈ [0, T ], the force 2A−1(t, x)b(t, x) has a potential −βH(t, x),
then the quasi-invariant distribution

π(t, x) = e−βH(t,x)

∫
Rd e−βH(t,x)dx

,

and

F(t) = −β−1 ln
∫

Rd

e−βH(t,x)dx

is the Helmholtz free energy of this diffusion process at time t .
Therefore, W(ω) = ∫ T

0
∂H
∂s

(s,Xs)ds defined in the previous section is just the external
work done on the system, Q(ω) in (7) is regarded as the total heat exchanged with the
reservoir, and (7) is actually the extension of the first law of thermodynamics.

The reversible work, Wr = �F = F(T ) − F(0), is the free energy difference between
two equilibrium ensembles. And the dissipative work Wd = W − Wr , is defined as the dif-
ference between the actual work and the reversible work.

By Theorems 2.6 and 2.9, we get

Theorem 3.1 Under the condition of Theorem 2.6, the well known Jarzynski’s equality be-
comes

EP[0,T ] [e−βWd ] = 1,

i.e.

EP[0,T ] [e−βW ] = e−β�F . (13)

And EP[0,T ]Wd ≥ 0, i.e. EP[0,T ]W ≥ �F , which is an extension of the second law of thermo-
dynamics. Moreover, EP[0,T ]W = �F if and only if

∫ T

0

∂ logπs

∂s
(Xs(ω))ds = 0, P[0,T ]-a.s.

If the inhomogeneous multidimensional diffusion process X = {X(t)}0≤t≤T is unperturbed,
then W(ω) = �F for each trajectory ω.

Remark 3.2 Although the existence of a potential for the force 2A−1b(t, x) is not a necessity
in our proof of Sect. 2, it is essential for the concept of free energy in physics, because free
energy can only be defined for the equilibrium states.

3.2 Generalization of Hatano and Sasa’s Work

As we have mentioned in the introduction of the present paper, Hatano and Sasa only derived
their result in the case of inhomogeneous Markov chains rather than diffusion processes, and
they regarded the corresponding result in the case of inhomogeneous diffusion processes be
the direct limit of that in inhomogeneous Markov chain case. From the mathematical point
of view, diffusion processes can be regarded as the limit of inhomogeneous Markov chains,
but only in the sense of distribution rather than trajectories.

Using the phenomenological framework of steady-state thermodynamics constructed by
Oono and Paniconi [31], they show that an extended form of the second law holds for tran-
sitions between steady states, relating the Shannon entropy (also accepted as the common
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definition of Gibbs entropy) difference to the excess heat produced in an infinitely slow op-
eration. A generalized version of the Jarzynski work relation plays an important role in their
theory [15].

In their work, they studied a simple one-dimensional stochastic model of Langevin dy-
namics describing nonequilibrium steady states with drift coefficient 1

γ
(− ∂U(x;α)

∂x
+ f ) and

diffusion coefficient 2kBT = 2
β

. What they are concerned with is to establish the connec-
tion between the phenomena displayed by nonequilibrium steady states and thermodynamic
laws. Three kinds of heats are defined: the total heat Qtot , the housekeeping heat Qhk and
the excess heat Qex , satisfying Qtot = Qhk + Qex . By convention, they take the sign of heat
to be positive when it flows from the system to the heat bath.

In the case of inhomogeneous multidimensional diffusion processes, the housekeeping
heat

Qhk(ω) = 1

β

∫ T

0
[2A−1b(t,Xt ) − ∇ logπt(Xt )]dXt , (14)

where dXt is of the Stratonovich type. A simple example of this interpretation of the heat
was implied in Sekimoto’s work [38] and explicitly defined in Hatano and Sasa’s work [15].

It has been proved that for equilibrium systems, 2A−1b(t, x) = ∇ logπt (x) [25, Theo-
rem 3.3.7], hence Qex reduces to the total heat Qtot .

In the case of inhomogeneous multidimensional diffusion processes, the total heat is
defined as

Qtot (ω) = 1

β

∫ T

0
(2A−1b(t,Xt ))dXt . (15)

Since

�H(ω) =
∫ T

0

∂H

∂t
(t,Xt )dt +

∫ T

0
∇H(t,Xt)dXt

and

∇H(t, x) = − 1

β
∇ logπt (x),

we find that the excess heat defined in Hatano and Sasa’s paper is just

Qex(ω) = Qtot (ω) − Qhk(ω) =
∫ T

0

1

β
∇ logπt(Xt )dXt

= −
∫ T

0
∇H(t,Xt)dXt = −�H(ω) +

∫ T

0

∂H

∂t
(t,Xt )dt = −Q(ω), (16)

where Q(ω) is defined in (7).
Denote φ(t, x) = −logπ(t, x) to be the Gibbs entropy (also called Gibbs free energy) of

state x at time t , then

�φ = β(�H − �F).

Therefore,

Wd = W − �F = (�H − Q) − �F = Qex + �φ

β
. (17)

So we can get the generalized Jayzynski’s equality of nonequilibrium steady states.
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Theorem 3.3 Under the condition of Theorem 2.6,

EP[0,T ] [e−βQex−�φ] = 1. (18)

Let S(t) = 〈φ(t)〉 = − ∫
Rd π(t, x) logπ(t, x)dx be the Gibbs entropy (Shannon entropy)

at time t , then the extension of the second law of thermodynamics in NESS becomes

Theorem 3.4

�S = �〈φ〉 ≥ −β〈Qex〉. (19)

Moreover, −β〈Qex〉 = �S if and only if

∫ T

0

∂ logπs

∂s
(Xs(ω))ds = 0, P[0,T ]-a.s.

If the inhomogeneous multidimensional diffusion process X = {X(t)}0≤t≤T is unperturbed,
then −β〈Qex〉 = �S for each trajectory ω.

Therefore, the generalized entropy difference �S between two steady states can be mea-
sured through −β〈Qex〉 resulting from a slow (unperturbed) process connecting these two
states, which allows one to define the generalized entropy of nonequilibrium steady states
experimentally, by measuring the excess heat obtained in a slow process between any non-
equilibrium steady state and an equilibrium state whose entropy is known.

As in [15], from (19) one can derive the minimum work principle for steady-state ther-
modynamics.

Acknowledgements The authors would like to thank Prof. Hong Qian at University of Washington for
introducing reference [20] and Prof. Min Qian at Peking University for helpful discussion. This work is
partly supported by the NSFC 10701004.

References

1. Baiesi, M., Jacobs, T., Maes, C., Skantzos, N.S.: Fluctuation symmetries for work and heat. Phys. Rev.
E 74, 021111 (2006)

2. Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible
Markovian systems. J. Stat. Phys. 90, 1481–1487 (1998)

3. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free
energy differences. Phys. Rev. E 60, 2721–2726 (1999)

4. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61(3), 2361–
2366 (2000)

5. Dynkin, E.B.: Die Grundlagen der Theorie der Markoffschen Prozesse. Springer, Berlin (1961)
6. Dynkin, E.B.: Markov Processes, vols. 1, 2. Springer, Berlin (1965)
7. Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs (1964)
8. Ge, H., Qian, M.: Generalized Jarzynski’s equality in inhomogeneous Markov chains. J. Math. Phys. 48,

053302 (2007)
9. Ge, H., Jiang, D.Q., Qian, M.: A simple discrete model of Brownian motors: time-periodic Markov

chains. J. Stat. Phys. 123(4), 831–859 (2006)
10. Ge, H., Jiang, D.Q., Qian, M.: Reversibility and entropy production of inhomogeneous Markov chains.

J. Appl. Probab. 43(4), 1028–1043 (2006)
11. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley–

Interscience, London (1971)
12. Haken, H.: Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in

Physics, Chemistry, and Biology. Springer, Berlin (1977)



Generalized Jarzynski’s Equality of Diffusion Processes 689

13. Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices.
Springer, Berlin (1983)

14. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noorrdhoff, Alphen aan
den Rijn-Germantown (1980)

15. Hatano, T., Sasa, S.: Steady-states thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466
(2001)

16. Hill, T.L.: Studies in irreversible thermodynamics IV. Diagrammatic representation of steady state fluxes
for unimolecular systems. J. Theor. Biol. 10, 442–459 (1966)

17. Hill, T.L.: Free Energy Transduction in Biology. Academic, New York (1977)
18. Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics. Springer, New York (1995)
19. Hill, T., Chen, Y.: Stochastics of cycle completions (fluxes) in biochemical kinetic diagrams. Proc. Natl.

Acad. Sci. USA 72, 1291–1295 (1975)
20. Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling exper-

iments. Proc. Natl. Acad. Sci. USA 98(7), 3658–3661 (2001)
21. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693

(1997)
22. Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: A master-

equation approach. Phys. Rev. E 56, 5018–5035 (1997)
23. Jarzynski, C.: Microscopic analysis of Clausius-Duhem processes. J. Stat. Phys. 96, 415–427 (1999)
24. Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000)
25. Jiang, D.Q., Qian, M., Qian, M.P.: Mathematical Theory of Nonequilibrium Steady States—On the Fron-

tier of Probability and Dynamical Systems. Lect. Notes Math., vol. 1833. Springer, Berlin (2004)
26. Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes. Springer, New York (1987)
27. Karatzas, I., Shreve, E.S.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)
28. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, New

York (1994)
29. Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequi-

librium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)
30. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems: From Dissipative Structures to

Order through Fluctuations. Wiley, New York (1977)
31. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)
32. Qian, H.: Mathematical formalism for isothermal linear reversibility. Proc. R. Soc. Lond. Ser. A 457,

1645–1655 (2001)
33. Qian, H.: Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics.

J. Phys. Condens. Matter 17, S3783–S3794 (2005)
34. Qian, M.P., Qian, M.: Circulation for recurrent Markov chains. Z. Wahrsch. Verw. Geb. 59, 203–210

(1982)
35. Qian, M.P., Qian, M.: The entropy production and reversibility of Markov processes. Sci. Bull. 30(3),

165–167 (1985)
36. Qian, M.P., Qian, C., Qian, M.: Circulations of Markov chains with continuous time and the probability

interpretation of some determinants. Sci. Sin. (Ser. A) 27(5), 470–481 (1984)
37. Qian, M.P., Qian, M., Gong, G.L.: The reversibility and the entropy production of Markov processes.

Contemp. Math. 118, 255–261 (1991)
38. Sekimoto, K.: Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys.

Soc. Jpn. 66, 1234–1237 (1997)
39. Strook, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)
40. van Zon, R., Cohen, E.G.D.: Stationary and transient work-fluctuation theorems for a dragged Brownian

particle. Phys. Rev. E 67, 046102 (2003)
41. van Zon, R., Cohen, E.G.D.: Extension of the fluctuation theorem. Phys. Rev. Lett. 91, 110601 (2003)
42. van Zon, R., Cohen, E.G.D.: Extended heat-fluctuation theorems for a system with deterministic and

stochastic forces. Phys. Rev. E 69, 056121 (2004)
43. Zhang, Z.S.: Mathematical Analysis, vols. 1, 2, 3. Peking University Press (1991) (in Chinese)


	Generalized Jarzynski's Equality of Inhomogeneous Multidimensional Diffusion Processes
	Abstract
	Introduction
	Mathematical Theory of Generalized Jarzynski's Equality
	Basic Property of Inhomogeneous Diffusion Processes
	Rigorous Proof of Generalized Jarzynski's Equality

	Physical Meaning and Applications
	Generalization of Hummer and Szabo's Work
	Generalization of Hatano and Sasa's Work

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


